FANDOM


[MATH4513]  Life Contingencies Models and Insurance Risk Edit

Semester of Enrollment:2015 spring

Instructor:PENG, Xianhua

Grade: (Good/Bad/...) Good (I guess)

Comments: 一個RMBI同actuarial minor既 elective 同RMBI4220 co-list 冇記錯班上有大約2/3 RMBI人同 1/3 math人

個course可以講係玩緊層層疊, 下一部分既materials都係用前一part build出黎,可謂先甜後苦既代表作 開頭兩個禮拜教既野極其簡單同教得極慢, 只係一D basic到冇得再basic既probability 之後就都係用番basic probability去define一堆actuarial notation 雖然唔難但要時間適應堆符號 跟住開始學睇life table(一個table list哂唔同既年紀有幾多insured未死) 同根據life table 同用actuarial notation去搵番你想搵既資料 (e.g. probability of a insured aged 50 dies after one year) 呢度就係mid term前既範圍, 2421讀得好既會覺得好簡單, 基本上只係applied probability

到mid term之後難度會大增 繼續落去既係insurance benefit, 講緊既係assume張保單賠一蚊, 咁佢既價值有幾多 亦即係expect要賠幾多錢(cash paid by the insuarance company) 當然成件事就唔係咁簡單啦是關佢有分好多種唔同既insurance e.g. whole life, 只要買左就幾時死都有錢賠, term insuarance, 得某個限定period死左先有得賠 亦都有分幾時賠, e.g. 死左即刻賠( continuous case) 死左個年年尾賠(annual case) 各種唔同既product都有唔會既計法, 不過都可以用番life table既data 計出黎 接住落黎既annuity就講緊張保單生效既時候,assume一期比一蚊,間公司expect收到幾錢(cash received by the company) 當然又係同benefit一樣又係分咁多種, 而個expected value of annuity多數可以寫成相應既function of benefit 到最後終於到premium calculation, 就係計番張保單應該每期收幾錢而個計法就係用expected present value of benefit and annuity用equilibium principle去計番出黎

講下個prof, 雖然會有D悶, 不過教得唔錯同幾好人,而grading方面 功課開頭兩份簡單後邊兩份難到仆街 mid term極簡單全計數 個mean 有成85%而我就錯左低B野做左on9仔 final難度顯著提高(其實難左好撚多) 雖然大部分計數得兩題prove,但係其複雜程度絕對不能與mid term相題并論

雖然mid term炒左final自覺都炒埋但係出黎居然有A (冇出final分冇得對巻) so我"個人認為"都算靚grade sosad


Grading: 15% HW(4份) 30% mid term 55% final